Random death process for the regularization of subdiffusive anomalous equations

نویسندگان

  • Sergei Fedotov
  • Steven Falconer
چکیده

Subdiffusive fractional equations are not structurally stable with respect to spatial perturbations to the anomalous exponent (Phys. Rev. E 85, 031132 (2012)). The question arises of applicability of these fractional equations to model real world phenomena. To rectify this problem we propose the inclusion of the random death process into the random walk scheme from which we arrive at the modified fractional master equation. We analyze the asymptotic behavior of this equation, both analytically and byMonte Carlo simulation, and show that this equation is structurally stable against spatial variations of anomalous exponent. Additionally, in the continuous and long time limit we arrived at an unusual advection-diffusion equation, where advection and diffusion coefficients depend on both the death rate and anomalous exponent. We apply the regularized fractional master equation to the problem of morphogen gradient formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random death process for the regularization of subdiffusive fractional equations.

The description of subdiffusive transport in complex media by fractional equations with a constant anomalous exponent is not robust where the stationary distribution is concerned. The Gibbs-Boltzmann distribution is radically changed by even small spatial perturbations to the anomalous exponent [S. Fedotov and S. Falconer, Phys. Rev. E 85, 031132 (2012)]. To rectify this problem we propose the ...

متن کامل

Subdiffusive master equation with space-dependent anomalous exponent and structural instability.

We derive the fractional master equation with space-dependent anomalous exponent. We analyze the asymptotic behavior of the corresponding lattice model both analytically and by Monte Carlo simulation. We show that the subdiffusive fractional equations with constant anomalous exponent μ in a bounded domain [0,L] are not structurally stable with respect to the nonhomogeneous variations of paramet...

متن کامل

Nonlinear subdiffusive fractional equations and the aggregation phenomenon.

In this article we address the problem of the nonlinear interaction of subdiffusive particles. We introduce the random walk model in which statistical characteristics of a random walker such as escape rate and jump distribution depend on the mean density of particles. We derive a set of nonlinear subdiffusive fractional master equations and consider their diffusion approximations. We show that ...

متن کامل

Fractional Reaction-transport Equations Arising from Evanescent Continuous Time Random Walks

Continuous time random walks (CTRWs) describe a particular class of renewal processes used to model a wide variety of phenomena such as the motion of charge carriers in disordered systems, the dynamics of financial markets, the motion of diffusing particles in crowded environments, and certain anomalous relaxation phenomena in dielectric systems. It is well known that, on long time scales, a CT...

متن کامل

Transport equations for subdiffusion with nonlinear particle interaction.

We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012